Selasa, Juli 31, 2007

INSPECTION OF REINFORCEMENT

This involves approval of rebar material for conformance to the physical properties required, such as ASTM specifications for the strength grade specified; approval of the bar details and placing drawings; approval of fabrication to meet the approved details within the prescribed tolerances; and approval of rebar placing.
Approvals of rebar material may be made on the basis of mill tests performed by the manufacturer for each heat from which the bars used originated. If samples are to be taken for independent strength tests, measurements of deformations, bending tests, and minimum weight, the routine samples may be best secured at the mill or the fabrication shop before fabrication. Occasionally, samples for check tests are taken in the field; but in this case, provision should be made for extra lengths of bars to be shipped and for schedules for the completion of such tests before the material is required for placing. Sampling at the point of fabrication, before fabrication, is recommended.
Inspection of fabrication and placement is usually most conveniently performed in the field, where gross errors would require correction in any event. Under the ACI 318 Building Code, the bars should be free of oil, paint, form coatings, and mud when placed. Rust or mill scale sufficiently loose to damage the bond is normally dislodged in handling.
If heavily rusted bars (which may result from improper storage for a long time exposed to rusting conditions) are discovered at the time of placing, a quick field test of suitability requires only scales, a wire brush, and calipers. In this test, a measured length of the bar is wire-brushed manually and weighed. If less than 94% of the nominal weight remains, or if the height of the deformations is deficient, the rust is deemed excessive. In either case, the material may then be rejected or penalized as structurally inadequate. Where space permits placing additional bars to make up the structural deficiency (in anchorage capacity or weight), as in walls and slabs, this solution is preferred, because construction delay then is avoided.
Where project specifications impose requirements on rust more severe than the structural requirements of the ACI 318 Building Code, for example, for decorative surfaces exposed to weather, the inspection should employ the special criteria required.

INSPECTION OF REINFORCEMENT

This involves approval of rebar material for conformance to the physical properties required, such as ASTM specifications for the strength grade specified; approval of the bar details and placing drawings; approval of fabrication to meet the approved details within the prescribed tolerances; and approval of rebar placing.
Approvals of rebar material may be made on the basis of mill tests performed by the manufacturer for each heat from which the bars used originated. If samples are to be taken for independent strength tests, measurements of deformations, bending tests, and minimum weight, the routine samples may be best secured at the mill or the fabrication shop before fabrication. Occasionally, samples for check tests are taken in the field; but in this case, provision should be made for extra lengths of bars to be shipped and for schedules for the completion of such tests before the material is required for placing. Sampling at the point of fabrication, before fabrication, is recommended.
Inspection of fabrication and placement is usually most conveniently performed in the field, where gross errors would require correction in any event. Under the ACI 318 Building Code, the bars should be free of oil, paint, form coatings, and mud when placed. Rust or mill scale sufficiently loose to damage the bond is normally dislodged in handling.
If heavily rusted bars (which may result from improper storage for a long time exposed to rusting conditions) are discovered at the time of placing, a quick field test of suitability requires only scales, a wire brush, and calipers. In this test, a measured length of the bar is wire-brushed manually and weighed. If less than 94% of the nominal weight remains, or if the height of the deformations is deficient, the rust is deemed excessive. In either case, the material may then be rejected or penalized as structurally inadequate. Where space permits placing additional bars to make up the structural deficiency (in anchorage capacity or weight), as in walls and slabs, this solution is preferred, because construction delay then is avoided.
Where project specifications impose requirements on rust more severe than the structural requirements of the ACI 318 Building Code, for example, for decorative surfaces exposed to weather, the inspection should employ the special criteria required.

BAR SUPPORTS

Bar supports are commercially available in three general types of material: wire, precast concrete, and all-plastic. Descriptions of the various types of bar supports,as well as recommended maximum spacings and details for use, are given in the CRSI ‘‘Manual for Standard Practice.’’
Wire bar supports are generally available in the United States in three classes of rust prevention: plastic-protected, stainless-steel-protected, and no protection (plain). Precast-concrete bar supports are normally supplied in three styles; plain block, block with embedded wires, and block with a hole for the leg of a vertical bar for top- and bottom-bar support.
Various types and sizes of all-plastic bar supports and sideform spacers are available. Consideration should be given to the effects of thermal changes, inasmuch as the coefficient of thermal expansion of the plastic can differ significantly from that of concrete. Investigation of this property is advisable before use of all-plastic supports in concrete that will be exposed to high variations in temperature.
Bar supports for use with epoxy-coated rebars should be made of dielectric material. Alternatively, wire bar supports should be coated with dielectric material, such as plastic or epoxy.

Jumat, Juli 20, 2007

PRESTRESSING STEEL

Cold-drawn high-strength wires, singly or stranded, with ultimate tensile strengths up to 270 ksi, and high-strength, alloy-steel bars, with ultimate tensile strengths up to 160 ksi, are used in prestressing. The applicable specifications are:
  • ASTM A416/A416M, Uncoated Seven-Wire Stress-Relieved Strand
  • ASTM A421/A421M, Uncoated Stress-Relieved Wire
  • ASTM A722/A722M, Uncoated High-Strength Bar
Single strands are used for plant-made pretensioned, prestressed members. Posttensioned prestressing may be performed with the member in place, on a site fabricating area, or in a plant. Posttensioned tendons usually consist of strands or bars. Single wires, grouped into parallel-wire tendons, may also be used in posttensioned applications.

SPECIAL FORMS & INSPECTION OF FORMWORK

Special formwork may be required for uncommon structures, such as folded plates, shells, arches, and posttensioned-in-place designs, or for special methods of construction, such as slip forming with the form rising on the finished concrete or with the finished concrete descending as excavation progresses, permanent forms of any type, preplaced-grouted-aggregate concreting, underwater concreting, and combinations of precast and cast-in-place concreting.

Inspection of formwork for a building is a service usually performed by the architect, engineer, or both, for the owner and, occasionally, directly by employees of the owner. Formwork should be inspected before the reinforcing steel is in place to ensure that the dimensions and location of the concrete conform to design drawings (Art. 9.16). This inspection would, however, be negligent if deficiencies in the areas of contractor responsibility were not noted also. (See ‘‘Guide to Formwork for Concrete,’’ ACI 347R, and ‘‘Formwork for Concrete,’’ ACI SP-4, for construction check lists, and ‘‘Manual of Concrete Inspection,’’ ACI SP-2.)

Sabtu, Juli 14, 2007

FORM REMOVAL AND RESHORING

Much friction between contractors’ and owners’ representatives is created because of misunderstanding of the requirements for form removal and reshoring. The contractor is concerned with a fast turnover of form reuse for economy (with safety), whereas the owner wants quality, continued curing for maximum in-place strength, and an adequate strength and modulus of elasticity to minimize initial deflection and cracking. Both want a satisfactory surface.
Satisfactory solutions for all concerned consist of the use of high-early-strength concrete or accelerated curing, or substitution of a means of curing protection other than formwork. The use of field-cured cylinders (Arts. 9.7 and 9.14) in conjunction with appropriate nondestructive in-place strength tests (Art. 9.14) enables owner and contractor representatives to measure the rate of curing to determine the earliest time for safe form removal.

Reshoring or ingenious formwork design that keeps shores separate from surface forms, such as ‘‘flying forms’’ that are attached to the concrete columns, permits early stripping without premature stress on the concrete. Properly performed, reshoring is ideal from the contractors’ viewpoint. But the design of reshores several stories in depth becomes very complex. The loads delivered to supporting floors are very difficult to predict and often require a higher order of structural analysis than that of the original design of the finished structure. To evaluate these loads, knowledge is required of the modulus of elasticity Ec of each floor (different), properties of the shores (complicated in some systems by splices), and the initial stress in the shores, where is dependent on how hard the wedges are driven or the number of turns of screw jacks, etc. (‘‘Formwork for Concrete,’’ ACI SP-4). When stay-in-place shores are used, reshoring is simpler (because variations in initial stress, which depend on workmanship, are eliminated), and a vertically progressive failure can be averted.

One indirect measure is to read deflections of successive floors at each stage. With accurate measurements of Ec, load per floor can then be estimated by structural theory. A more direct measure (seldom used) is strain measurement on the shores, usable with metal shores only. On large projects, where formwork cost and cost of failure justify such expense, both types of measurement can be employed.

LOADS ON FORMWORK

Formwork should be capable of supporting safely all vertical and lateral loads that might be applied to it until such loads can be supported by the ground, the concrete structure, or other construction with adequate strength and stability. Dead loads on formwork consist of the weight of the forms and the weight of and pressures from freshly placed concrete. Live loads include weights of workers, equipment, material storage, and runways, and accelerating and braking forces from buggies and other placement equipment. Impact from concrete placement also should be considered in formwork design.
Horizontal or slightly inclined forms often are supported on vertical or inclined support members, called shores, which must be left in place until the concrete placed in the forms has gained sufficient strength to be self-supporting. The shores may be removed temporarily to permit the forms to be stripped for reuse elsewhere, if the concrete has sufficient strength to support dead loads, but the concrete should then be reshored immediately. Loads assumed for design of shoring and reshoring of multistory construction should include all loads transmitted from the stories above as construction proceeds.

Senin, Juli 09, 2007

MATERIALS AND ACCESSORIES FOR FORMS

When a particular design or desired finish imposes special requirements, and only then, the engineer’s project specifications should incorporate these requirements and preferably require sample panels for approval of finish and texture. Under competitive bidding, best bids are secured when the bidders are free to use ingenuity and their available materials (‘‘Formwork for Concrete,’’ ACI SP-4).

Rabu, Juli 04, 2007

RESPONSIBILITY FOR FORMWORK

The exact legal determination of responsibilities for formwork failures among owner, architect, engineer, general contractor, subcontractors, or suppliers can be determined only by a court decision based on the complete contractual arrangements undertaken for a specific project.
Generally accepted practice makes the following rough division of responsibilities:
Safety. The general contractor is responsible for the design, construction, and safety of formwork. Subcontractors or material suppliers may subsequently be held responsible to the general contractor. The term ‘‘safety’’ here includes prevention of any type of formwork failure. The damage caused by a failure always includes the expense of the formwork itself, and may also include personal injury or damage to the completed portions of a structure. Safety also includes protection of all personnel on the site from personal injury during construction. Only the supervisor of the work can control the workmanship in assembly and the rate of casting on which formwork safety ultimately depends.
Structural Adequacy of the Finished Concrete. The structural engineer is responsible for the design of the reinforced concrete structure. The reason for project specifications requiring that the architect or engineer approve the order and time of form removal, shoring, and reshoring is to ensure proper structural behavior during such removal and to prevent overloading of recently constructed concrete below or damage to the concrete from which forms are removed prematurely. The architect or engineer should require approval for locations of construction joints not shown on project drawings or project specifications to ensure proper transfer of shear and other forces through these joints. Project specifications should also require that debris be cleaned from form material and the bottom of vertical element forms, and that form-release agents used be compatible with appearance requirements and future finishes to be applied. None of these considerations, however, involves the safety of the formwork per se.

Senin, Juli 02, 2007

AT THE PLACING POINT-SLUMP ADJUSTMENTS

With good quality control, no water is permitted on the mixing truck. If the slump is too low (or too high) on arrival at the site, additional cement must be added. If the slump is too low (the usual complaint), additional water and cement in the prescribed water-cementitious materials ratio can also be added. After such additions, the contents must be thoroughly mixed, 2 to 3 min at high speed. Because placing-point adjustments are inconvenient and costly, telephone or radio communication with the supply plant is desirable so that most such adjustments may be made conveniently at the plant.
Commonly, a lesser degree of control is accepted in which the truck carries water, the driver is on the honor system not to add water without written authorization from a responsible agent at the site, and the authorization as well as the amounts added are recorded on the record (trip ticket) of batch weights.
Note: If site adjustments are made, test samples for strength-test specimens should be taken only after all site adjustments. For concrete in critical areas, such as lower-floor columns in high-rise buildings, strictest quality control is recommended.

Minggu, Juli 01, 2007

AT THE PLACING POINT-SLUMP ADJUSTMENTS

With good quality control, no water is permitted on the mixing truck. If the slump is too low (or too high) on arrival at the site, additional cement must be added. If the slump is too low (the usual complaint), additional water and cement in the prescribed water-cementitious materials ratio can also be added. After such additions, the contents must be thoroughly mixed, 2 to 3 min at high speed. Because placing-point adjustments are inconvenient and costly, telephone or radio communication with the supply plant is desirable so that most such adjustments may be made conveniently at the plant.

Commonly, a lesser degree of control is accepted in which the truck carries water, the driver is on the honor system not to add water without written authorization from a responsible agent at the site, and the authorization as well as the amounts added are recorded on the record (trip ticket) of batch weights.

Note: If site adjustments are made, test samples for strength-test specimens should be taken only after all site adjustments. For concrete in critical areas, such as lower-floor columns in high-rise buildings, strictest quality control is recommended.